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aUniversidade de Vigo. CINTECX, Applied Geotechnologies Research Group, Campus
universitario de Vigo, As Lagoas, Marcosende, Vigo, 36310, Spain

bLIAAD, INESC TEC, Campus Faculty of Engineering, University of Porto, Dr.
Roberto Frias, Porto, 4200-465, Portugal

Abstract

Advances in technology are leading to more and more devices integrating
sensors capable of acquiring data in a very fast and with high accuracy. Point
clouds are no exception. Therefore, the large amount of available lidar data
is arising the community interest by point cloud classification using artificial
intelligence. Nevertheless, point cloud labelling is a time-consuming task.
Hence the amount of labelled data is scarce yet. Data synthesis is gaining
attention as an alternative to increase the volume of classified data. At the
same time, the amount of BIM models provided by manufacturers on website
databases is being increased. In line with these trends, a method to generate
classified point cloud data from BIM objects is presented. The method starts
by transforming BIM objects into point clouds deriving a dataset consisting of
21 object classes characterised with various perturbation patterns. Then, the
dataset is split into four subsets to carry out the evaluation of synthetic data
on the implemented flexible 2D deep neural framework. In the latter, binary
or greyscale images can be generated from point clouds by both orthographic
or perspective projection to feed the network. Moreover, surface variation
feature was computed in order to aggregate more geometric information to
images and to evaluate how it influences the object classification. The overall
accuracy is over 85% in all tests when orthographic images are used. Also, the
use of greyscale images representing surface variation improves performance
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in almost all tests although the computation of this feature may not be robust
in point clouds with complex geometry or perturbations.

Keywords: point clouds, deep learning, BIM, object classification, data
augmentation, transfer learning

1. Introduction

In the last decade, the use of 3D sensors such as laser scanners or depth
cameras has been consolidated in Architecture, Engineering and Construc-
tion (AEC) industry and robotics providing a greater availability of 3D mod-
els of indoor scenes in the point cloud form (Khoshelham et al., 2017). More
recently, mobile devices widely used by the population such as the ipad pro
or the iphone 12 pro have integrated lidar sensors extending the possibility
of acquiring point cloud data on a massive scale. In both computer vision
and 3D modelling, point cloud classification is an active topic because it
is a fundamental problem for the understanding of 3D scenes in the real-
world. Beyond geometric analysis, traditional machine learning techniques
have been applied to address the 3D classification problem (Weiss et al., 2010;
Park and Guldmann, 2019). However, the successful results achieved with
deep learning techniques in 2D image classification are leading researchers to
adopt this approach in 3D classification (Griffiths and Boehm, 2019a; Jaritz
et al., 2019).

Traditional machine learning techniques are based on teaching machines
to identify patterns and extract features from data that are not perceived
by humans due to the large volume and complexity of the information to be
processed (Dey, 2016). Thus, the performance of these methods is strongly
dependent on the design of a feature extractor that requires a comprehensive
knowledge in the domain of application. This limitation has been outper-
formed by the newest machine-learning techniques since their capacity to
interpret raw data without relying on human skills (LeCun et al., 2015).

In the recent years, Deep Neural Networks have demonstrated a high
performance in applications such as speech recognition (Abdel-Hamid et al.,
2012) and image recognition (Krizhevsky et al., 2012) becoming the state-
of-the-art so far for both areas (Szegedy et al., 2014). Convolutional Neural
Network (CNN) architecture is based on visual perception, hence its ability
to interpret the nature of images which makes CNNs suitable for image clas-
sification. The requirement to have a large classified dataset available is a
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major drawback of using CNNs because if labelled data are short, the deep
learning model will most likely cause overfitting (Liu et al., 2016).

In many areas, the amount of classified data is not enough to train a CNN
deriving a well-fitting model. This lack is commonly addressed by using data
augmentation techniques which consist in applying certain transformations
on the initial dataset to expand input data (Perez and Wang, 2017). Differ-
ent transformations can be applied to both synthetic and real data. Data
augmentation from real data can be addressed by data wrapping and syn-
thetic over-sampling approaches depending on whether the transformations
are applied in the data or in the feature-space respectively. To carry out
synthetic-based data augmentation, new samples are artificially generated to
be added to initial dataset (Wong et al., 2016). In this way, previous works
have demonstrated that the over-sampling generation of the minority classes
in imbalanced datasets can improve classifier performance (Bowyer et al.,
2011).

An additional alternative commonly used to deal with inadequacy of la-
belled data is to reuse models already trained in another application domain
or for a different task but keeping some sense of relationship. This approach,
widely known as transfer learning, leverages the knowledge acquired by train-
ing a model with a large amount of data to another domain of interest with
shorter data set (Pan and Yang, 2010). Network-based deep transfer learn-
ing consists in using a partially pre-trained network with a large volume of
labelled data in a smaller dataset that keeps certain similarity with the data
used to train the original network (Tan et al., 2018).

In last years, the development of applications using point clouds to gen-
erate as-build models from existing buildings has grown in the AEC indus-
try (Bosché et al., 2013). However, although more and more point clouds
are available, its labelling is an arduous, time-consuming and error-prone
task. The use the BIM models for ongoing building monitoring has pro-
vided considerable improvements in processes of construction control (Wang
et al., 2014), building energy analysis (Abanda and Byers, 2016), project
documentation and coordination (Broquetas et al., 2013). Also, BIM mod-
els of objects such as pieces of furniture are provided by manufacturers and
they can be retrieved from website databases. Since BIM models not only
represent geometry of building components or objects but also provide se-
mantic and functional information, they can be used as classified 3D models.
Recently, building BIM models have been used to generate both 2D and 3D
synthetic data for image classification and point cloud semantic segmentation

3



(Ma et al., 2020; Alawadhi and Yan, 2021). Nevertheless, training a neural
network with synthetic point clouds provides models that do not generalise
well with real-world data (Uy et al., 2019). To address with this shortcom-
ing, synthetic point clouds can be perturbed by adding intrinsic undesired
defects such as noise or occlusions.

This work proposes a method that explores the use of BIM object models
for generating synthetic data sets composed of multiple classes including
those that are not normally present in available public classified datasets.
Synthetic perturbed point clouds with noise and occlusions are also created
to reduce the impact of bad generalisation of classification models trained
with no real data. The main contributions provided by this work are as
follows:

• an algorithm to transform BIM objects into customized point clouds.
Beyond data provided, the procedure has the advantages that is highly
automated the minimal user intervention once BIM objects have been
downloaded.

• a flexible deep learning framework to evaluate the generated synthetic
data. This also implements fine-tuning functionality to optimise hy-
perparameters and data generation parameters.

• a comparison between simple orthographic projection and perspective
projection to generate images for 2D deep learning classification framed
on Gestalt approach.

• the use of surface curvature feature for image enrichment and the lim-
itations of this feature in the point cloud domain.

The remainder of the paper is organized as follows: section 2 summarizes
the previous related work. The proposed method is theoretically described in
section 3. Then, results and experiments are shown and discussed in section
4. Finally, section 5 is devoted to conclude the work.

2. Related work

This section addresses the state of the art of point cloud deep learning
classification focusing on techniques to tackle the labelling problem: Data
Synthesis and Transfer Learning applied to 2D data.
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High performance proved by CNNs in image classification together with
the increased availability of point clouds have led researchers to the devel-
opment of new 3D deep learning architectures. Nevertheless, handling the
non-regular structure of point clouds is still a challenge for CNNs. Hence
previous works have addressed this hardship with different strategies which
can be classified in three categories according to how data is represented.
Multi-view or projection-based approach consists in generating multiple 2D
images from several perspectives of the point cloud with the aim to take
advantage of the yield attained by 2D CNNs (Su et al., 2015). The main
drawback of these methods is the loss of both spatial information of the ob-
jects and spatial relationship to each other due to the 2D projection. Within
3D approaches, volumetric methods (Maturana and Scherer, 2015; Tchapmi
et al., 2017; Le and Duan, 2018) have been proposed to benefit from 3D ge-
ometrical object representation while preserving the nature of convolutional
operations from 2D CNN. For this purpose, point clouds are previously con-
verted to a 3D regular structure, commonly composed of voxels. Despite the
more realistic geometric representation, classification using the multi-view
CNNs (MVCNNs) has proved higher performance than volumetric CNNs
(Ruizhongtai Qi et al., 2016) due to the lower resolution of voxel representa-
tion among other factors. An alternative to structured approaches consists
in the use of network architectures capable of taking the points directly as
input data (Charles et al., 2017; Qi et al., 2017). The performance of early
architectures developed on the basis of this unstructured approach was lower
than the structured approaches. However, in the last years, the improve-
ment of theses architectures has been an active research topic are achieving
promising results (Landrieu and Simonovsky, 2018).

The shortage of 3D labelled data for training these 3D networks is an im-
portant disadvantage compared to 2D CNNs (Griffiths and Boehm, 2019b).
Point cloud object labelling is a time-consuming task since each point that
belongs to the object needs to be pin pointed. Although some datasets com-
posed of labelled point cloud data generated from RGB-D images (Silberman
et al., 2012; Xiao et al., 2013; Armeni et al., 2017; Chang et al., 2017) or 3D
CAD models (Wu et al., 2015) are available, the amount of classified data
is far from the number of images provided by the popular dataset ImageNet
(Krizhevsky et al., 2012) which is composed of over 14 million labelled images.
To deal with 3D data labelling problem, this work proposes a combination
of Data Synthesis and Transfer Learning techniques applied to 2D data.

In this line, data synthesis is gaining preference to solve the problem of
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relevant and labeled data lacking. In fact, some areas of data mining and
machine learning rely significantly on benchmark data sets to compare and
evaluate results across competing methods in their development. To over-
come the shortage of publicly available large real-world data sets, synthetic
or semi-synthetic datasets are very suitable for a wide range of controlled sce-
nario tests for several Machine Learning methods, such as regression (Cano
and Torra, 2009), classification (Sánchez-Monedero et al., 2013), drift detec-
tion (Iglesias et al., 2020; Belford et al., 2017), anomaly detection (Taylor
et al., 2016), failure prediction (Hajiaghayi and Vahedi, 2019). In fact, this
approach brings the possibility of producing a large quantity of relevant data,
of generating data with desired characteristics for testing and of knowing ex-
actly the targets and the underlying models. In some cases, for specific
complex data algorithms such as Multi-Label Classification and Multi-target
Regression, the dataset may be difficult to find (Tomás et al., 2014). The
main drawback of Data Synthesis is that it does not have a well-defined
methodology since there is not a specific technique for each data type in
each context. Besides, as this does not generate all the diversity of data and
the true noise information, the required models precision may be not well
represented.

But this approach goes a step further. Through data synthesis it is pos-
sible to teach the concept of a class to a training model. That is, data is
generated in a way that expresses the main features of classes. In particular,
in this work, furniture objects are characterized in their essential features,
primarily their geometry, that we use to identify the same objects. This
approach is inspired in the Gestalt theories of perception, where human per-
ception tends to understand objects as an entire structure rather than the
sum of its parts. Therefore, objects are synthesized by using overall shapes
that include all parts of the object.

Transfer learning is also another technique to solve the problem of training
data shortage. Particularly, 2D neural networks are less likely to overfitting
than the 3D architectures due to the amount of available labelled images in
contrast 3D models. To leverage the potential of 2D CNNs, the synthetically
generated point clouds are transformed into images, so that this approach
can be also a particular case of transfer learning. In fact, data does come
from the domain of point clouds while training is performed with synthetic
images. A closed transfer learning approach was used by Balado et al. (2020)
proving that augmenting RGB image dataset generated from coloured point
clouds with images avaliable on online resources can improve furniture object
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classification. Goyal et al. (2021) used depth images generated from point
clouds obtaining results in the state-of-the-art. Our method generate syn-
thetic point clouds from BIM objects. Resultant point clouds are mapped to
binary and greyscale images by applying orthographic and perspective pro-
jection. Results obtained using the different generated images are evaluated
and compared.

3. Method

The general workflow of the proposed method is depicted in Fig. 1.
The method starts by collecting BIM objects from websites and organizing
them into object classes to serve as source dataset. After, these models are
processed to generate a synthetic dataset of classified point clouds affected
by different perturbations such as noise and occlusions. Once labelled point
clouds are generated, they are used as the input data to the deep learning
framework developed for point cloud object recognition. This framework is
composed of sequential steps such as image generation, model computation
and object classification which are explained in more detail in the following
sections.

Figure 1: General workflow

3.1. Point cloud data generation

In this step, a classified point cloud dataset is generated by processing
BIM objects which are downloaded from website databases. Unlike virtual
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CAD models, object models provided by manufacturers correspond to real-
world objects. Thus, these models are downloaded from free registration
websites and stored in a directory arranged by object category. The use of
graphical interfaces of database search engines facilitates model collecting
process by type object filtering. Besides, file format is restricted to those
that do not require commercial software to be processed.

Both BIM models and point clouds are handled and processed by the
open-source python library Open3D (Zhou et al., 2018). This software pro-
vides the necessary transformations and operations for the method develop-
ment. BIM models with OBJ. format are directly imported to be processed
while ifc format models are automatically converted to OBJ. by invoking the
open-source application IfcConvert in batch mode.

Then, from each object model, four point clouds are generated by adding
perturbations with different characterisations. First, a point cloud without
any perturbation is directly obtained by poisson disk sampling algorithm
(Yuksel, 2015) which requires determining the number of sampled points
npts. To ensure a fixed density for every object point cloud, npts is calculated
regarding the total area of the object surface AS by the following equation:

npts = dens ∗ AS (1)

Where dens is a fixed density in pts/m².
After, object point cloud orientation is visually checked and corrected if

the object is not aligned with Z axis. This step is required to augment the
data by applying coherent rotations along Z axis in the sense of how the
objects are generally positioned in the real-world. This oriented point cloud
Po is an instance of the perturbed-free dataset which will be used to generate
training/validation images. Next, three perturbed datasets are generated
from Po by adding noise and occlusions to Po. Synthetic data simulates
these real effects presented in point clouds serving as useful training data to
classify real data or as testing data when real data is not available.

Fig. 2 depicts how the sampled points clouds are processed to generate
the four characterised datasets. Noisy point clouds are derived by Gaussian
noise addition operation which consists in aggregating an offset to each point
position belonging to a real surface. The added noise is modeled by a zero-
average normal distribution with a standard deviation σ.

The presence of occlusions in point clouds is a common hardship in real
scenarios due to the appearance of objects between the laser beam and the
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Figure 2: Generation of four types of point clouds according to the perturbations imple-
mented.

target object. To take into account this perturbation, the process of adding
occlusion intends to simulate occlusion effects by using a fast and simple
visibility analysis known as Hidden Point Removal (HPR) which is imple-
mented in the Open3D library. As shown in Fig. 3, four subsets of points
are extracted from the input point cloud Pi on basis of visibility from four
viewpoints. The bounding box enclosing the object BBobj is taken as a refer-
ence to determinate the observation positions. These view points belong to a
plane located dxy meters away from vertical faces of the BBobj and orthogo-
nal to the faces. To determinate view positions, centroids of vertical faces are
projected to the planes and then projected points are vertically shifted by
arbitrarily setting point height to Zoff relative to the bottom of the BBobj.
Finally, occlusion is simulated by discarding a point subset randomly selected
so that the resulting occluded point cloud is composed of the three remaining
point subsets.

The last dataset consists of point clouds characterised by both noise and
occlusion. Thus, this data are the most challenging for object recognition as
shown in Fig. 4 illustrating the processes implemented to generate four types
of point clouds from the same object model.

Once synthetic datasets are created, 3D information provided by point
clouds is exploited to extract object features that can increase classification
performance. Considering that the approach of this work is based on Gestalt
principle, variation of point cloud surfaces can provide useful information to
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Figure 3: Occlusion addition process.

Figure 4: Example of the four point clouds obtained with different characterisations from
a BIM model object

define the whole object. Therefore, surface variation is computed from each
point by applying the method proposed by Bazazian et al. (2015) based on the
eigenvalues of the covariance matrix. Unlike original method, radius search
criteria is used to select neighboring points which are contained in a closed
ball of radius ρ centered on the evaluated point. Point clouds visualised in
Fig. 4 are coloured according the computed surface variance value.

In summary, point cloud generation process converts 3D BIM objects into
different characterised point clouds providing synthetic classified datasets.
The process is automated requiring human-interaction only to collect models
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from websites and to carry out visual inspection to discard bad-built models
or to orient points clouds if necessary. Particularly, in this work, the gener-
ated synthetic point cloud dataset is used for training a neural network and
testing the trained model input data.

3.2. Deep learning framework

A flexible deep learning framework has been implemented with the aim of
conducting experiments using differently characterised point clouds, several
neural network architectures and optimisation techniques for hyperparame-
ter or data tuning. First, input object point clouds are converted to suitable
data for the neural networks integrated on the framework that work with
2D images. Previously, image generation parameters can be optimised if real
data are provided. Once training, validation and testing images are created,
a deep learning model is used for object prediction. The model can be com-
puted by training a neural network from scratch with training/validation
images or with auto Machine Learning to fine-tune network hyperparame-
ters. Also, a pre-trained model can be loaded to streamline tests within the
similar domain. Fig. 5 depicts deep learning framework procedures which
are exposed more extensively below.

Figure 5: Workflow of the deep learning framework

3.2.1. Image data generation

The initial process on the framework consists in transforming point clouds
to 2D image format adopted by the embedded deep learning architectures. A
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commonly used technique to represent three-dimensional data into 2D is 3D
graphical projection encompassing various transformations to generate im-
ages. The framework incorporates two selectable projections: orthographic
and perspective. While images generated by orthographic projection, here-
inafter referred as ’orthographic images’, are derived by directly projecting
points to XZ plane, perspective projection requires fixing a camera optical
center and determining a projection plane.

Images generated by perspective projection, which will referred to as ’per-
spective images’ are more realistic from the human-perception of the object
than orthographic images (Hearn and Baker, 1997). The camera optical cen-
ter Oc is fixed to a horizontal distance dh from a vertical face of BBobj at
Zoff meters height from the bottom of BBobj. Then, projection plane Πproj

is defined by the normal vector from object center Co to Oc and the bottom
vertices of the vertical face. Next, visible points from Oc are determined by
HPR algorithm and they are projected on the Πproj to derive a 2D object
representation.

Fig 6 visualises the workflow of the entire image generation process from
non perturbed point clouds to multi-channel images. In order to take ad-
vantage of the fact that the source data are represented on the 3D space,
several 2D images can be generated from each instance by making a random
rotation along the object up vector. From this randomly rotated point cloud,
nrot arbitrary rotations are carried out to generate one projected image for
each rotation corresponding to image channels. Before projection, noise and
occlusion addition processes described in 3.1 are applied on rotated point
clouds if these are perturbed free and testing data are real. For perspec-
tive projection, occlusion addition is omitted because this perturbation is
intrinsic to the visible points calculation.

After projection, points can be mapped into both binary or greyscale
pixels depending on whether point cloud features are regarded or not. Pixels
composing binary images take value 1 if at least one projected point falls in
the pixel area and the value 0 is assigned otherwise. In greyscale images,
pixels represent the above computed surface variation of points projected on
the pixel. Previously, values of surface variation are scaled using Eq. 2 to
avoid that points with no change in the surface (value 0) are represented as
empty pixels on the greyscale image:

σ
′

r(p) = σr(p) + (1−max{σr(pi) : pi ∈ P, i = 0, ..., n− 1}) (2)
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Figure 6: Workflow of image generation process.

Where σr(pi) represents the surface variation on the point pi considering a
neighbourhood radius /r. The pixel value is the averaged scaled surface vari-
ation of points projected on the pixel. Lastly, pixels are randomly translated
along to horizontal and vertical axis at most Th max and Tv max.

Examples of both image formats depicted in Fig 7 show that surface
changes along the object are more highlighted in greyscale images.

The number of images generated for training ntrain, validation nval and
testing ntesting are arbitrarily set being independent of the size of the point
cloud dataset. Previously to image generation, parameters used for image
generation such as maximum rotation angle Θmax, σ, Th max, Tv max can be
obtained from real by data tuning process which is further explained in the
next section.

3.2.2. Model computation

At the core of the developed approach, both synthetic data generation
and model training are presented. As will become clear in the following para-
graphs, both are deeply connected by a parameter optimisation methodology,
which sweeps across most of the developed modeling work.

Given the extreme computational costs of generating large enough datasets
for deep learning and of creating and training deep learning models, an opti-
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(a) Point clouds (b) Binary images (c) Greyscale images

Figure 7: Representation of two objects as a) point cloud coloured on basis its surface
variation, b) binary image and c) greyscale image.

misation method which aims at reducing the number of parameter configura-
tions tested or that is able to intelligently decrease the cost of these different
operations is a mandatory requirement.

From the large amount of optimisation and auto ML methodologies one
in particular was found to be very promising, not only presenting the best
results of all research gathered, but also providing the full source code, thus
giving a very strong starting position.

This optimisation method is Harmonica by (Hazan et al., 2017). We will
provide a description of how this method operates, however a technical and
detailed explanation is outside the scope of this paper and thus the interested
reader should refer to the aforementioned work.

The basic premise of Harmonica is to identify the most important param-
eters and to lock their values to the ones which lead to the best performance.
Then the optimisation of the remaining parameters follows in this now re-
duced search space. It works on the following manner:

Step 0 Given a set of tunable parameters X = (x1, x2, ..., xn) with each
parameter xm ∈ {0, 1} and a cost function f(X).

Step 1 Randomly initialize X and compute the score = f(X).
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Step 2 Repeat step 1 a fixed N number of times, storing all parameters sets
and scores.

Step 3 Expand the parameter sets with polynomial combinations including
interactions. Run Lasso regression with the list of polynomials as the
feature and the list of scores as the target.

Step 4 Use Lasso coefficients to identify monomial importance (powers and
interactions of features). Extract only the top n monomials.

Step 5 Obtain the set of important features. Important features are those
contained in the monomials obtained in step 4.

Step 6 Obtain all the possible value combinations for the set of important
features.

Step 7 For each combination obtain the score. The score for a value com-
bination Ci is given by

∑R
j=1{Coefj ×

∏S
k=1{vk : vk ∈ Ci, fk ∈ Mj}},

with R and S being the number of monomials and important features,
M and Coef being the monomials and respective coeficients, f being an
important feature and v being the value of the combination.

Thus, the score of the combination is the sum of the scores of the
monomials. While the score of a monomial is the coeficient of the
monomial times the multiplication of the values for each feature in the
monomial.

Step 8 Extract the top n combinations by score.

Step 9 Repeat steps 1-9 K times, saving all the combinations obtained in
step 8.

Step 10 Delegate further optimisation to a different optimisation method,
passing the obtained value combinations that should be locked.

Step 11 Return the best set of parameters found.

Given this it is possible to see that despite the great performance, the
functioning of the method is quite intuitive. The attentive reader might
however have noticed that there are two components that have yet to be
fully defined.

The first one is the cost function, which being dependent on the exact
problem and application will be different for the data parameter tuning and
model hyperparameter optimisation steps. Both these cases will be detailed
further into this section.
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The second component is the optimisation function to which the remain-
ing parameter optimisation is delegated. Like the cost function this too can
be changed, needing only to modify any intended function to lock the passed
value combinations in place. In the work where Harmonica is presented two
alternatives are proposed. The first one is simple random search, with the
non locked parameters being randomly set. This is, of course, not a very
intelligent strategy, which nevertheless tends to obtain quite good results.
The second alternative, and the one which we opted to use in this work, is
Hyperband, presented by (Li et al., 2017).

Much like for Harmonica we will present a brief overview of the core idea
behind the Hyperband method and an explanation of its functioning, however
for more technical details we direct the reader either to the harmonica paper,
or to the far more detailed Hyperband paper referred before.

The basic premise of Hyperband is first to reduce the amount of resources
allocated to parameter configurations which are not promising, by stopping
these early, while letting those which quickly yield better results continue.
This can be done by for example only letting models train for a small num-
ber of iterations, and continue training only for the ones obtaining the best
results, or by allocating only limited time to a operation.

However, different problems converge at different speeds, so for some a
partial resource allocation might be sufficient to differentiate, while for others
it might not. Thus, the second part of Hyperband tackles this problem by
testing different allocations and pruning speeds, from simply allocating all re-
sources equally to all candidates, like random search, or on the other extreme
allocating the minimum resources to many candidates and only continuing
with one. As such, it works in the following manner:

Step 0 Given a total budget B, a maximum budget per candidate Bc, a
control parameter η and, for the specific case of using Harmonica, the
list of locked configurations Lc.

Step 1 Calculate the number of pruning strategies to test S =
⌊
logBc
log η

⌋
and

the budget per strategy b =
⌊

B
S+1

⌋
.

Step 2 For all values of s ∈ {n : n ∈ N, 0 ≤ n ≤ S}, perform steps 3-5,
saving the best parameters.

Step 3 Calculate the number of initial random configurations Cn =
⌊

B×ηs
Bc×(s+1)

⌋
.

Obtain the initial budget for each configuration b0 = bBc× η−sc.
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Step 4 For all values of i ∈ {n : n ∈ N, 0 ≤ n ≤ s}, perform step 5, saving
the best parameters.

Step 5 Create Cn random configurations, picking, if using Harmonica, one
element of Lc at random for each. Obtain the cost for all configurations.

Step 6 With R being the number of remaining configurations. Keep only⌈
R
η

⌉
of the best configurations. Update the budget per configuration

for the next iteration to bi = dbi−1 × ηse.
Step 7 Return the best parameters found.

Similarly to Harmonica, the Hyperband algorithm achieves great results
while being quite intuitive, simply stopping less promising configurations
early, allowing better resource allocation to all others. Given this, we will
now present the two instances where this method was employed, starting
with data generation parameter optimisation.

As the basic version of Harmonica can only handle binary parameters,
to define more detailed parameter grids multiple binary parameters must be
combined. A total of 11 parameters, mapped into 4 actual parameters were
employed. These are 4 for noise intensity, 3 for maximum random z-rotation,
and 4 for maximum translation, with 2 for each axis (horizontal and vertical).

The cost function thus works as follows. First, a random instanciation of
the binary parameters is obtained by the optimisation method, with these
then being mapped into the actual parameters. The synthetic dataset is gen-
erated with these parameters and a predefined deep learning model is trained
to classify the instances of this dataset. Finally, the validation performance
in terms of accuracy is obtained for the classification of the actual, real data.

For the hyperparamter optimisation of the deep learning models the pro-
cess is quite similar. A synthetic dataset, that can be either be parameter
optimised or manually defined, is created. Then, the binary parameters are
set by Harmonica. There are a total of 8 parameters, 3 for learning rate, 2 for
batch size, 1 for momentum existence, 1 for momentum value and 1 for the
selection of the optimisation method. With these, the values are mapped and
the model trained on the synthetic dataset. Finally, the model is validated
on a different partition of the synthetic dataset and the accuracy is returned.

For this task, a set of deep learning models which have proven to be very
effective in computer vision were selected. All the models are presented in
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table 11, which span from the very simple 8 layer LeNet to the 43 million
parameter Inception-v4. Unlike for the various parameters, model selection
was done manually and separately, with architectures showing less promise,
like VGG-16 and Inception-v3 having less time dedicated to tuning.

To wrap up this section, we would be remiss to not point out a concerning
detail that the discerning reader might have noticed. This is the fact that
during the dataset parameter tuning, real data is used as a validation set, in
order to obtain the final score. Due to the data driven optimisation method-
ology this was required, but could, if mishandled, lead to a form of parameter
overfitting. To combat this two constraints were put in place. First, there is
no intersection between the portion of the real data used in the optimisation
and the one used for the final results. And second, the model architecture
used for data parameter tuning is always different from the one optimised
and used for the final predictions, with the former usually being the simpler
LeNet or AlexNet, and the latter being one of the other 6.

Table 1: Description of the neural networks available on the framework

Architecture Description
LeNet (LeCun et al., 1989) Simple convolutional network for handwritten digits.
AlexNet Krizhevsky et al. (2012) Winner of ILSVRC-2012 in image classification and localization.
VGG-16 (Simonyan and Zisserman, 2014) Archive the first and second place of ILSVRC-2014 in image classification and localisation.
Inception-v1 (Szegedy et al., 2015) Presents a novel block-based architecture with important performance improvments.
Inception-v3 (Szegedy et al., 2016) Runner-up in ILSVRC-2015.
Inception-v4 (Szegedy et al., 2017) Major performance and computational cost improvemnts over previous versions.
resNet 50 (He et al., 2016) One of the first to include skip connections, greatly increase potential performance.
Xception (Chollet, 2017) The first major network composed only of depthwise separable convolution layers.

4. Results

This section is organized in two parts in accordance with the workflow of
the method. First, the results of data generation are presented. The second
describes the tests performed and the results are discussed.

4.1. Dataset

The generated dataset is composed of 21 object classes collected in table
2. The number of instances in each class is less than the downloaded objects
since bad-built and mis-scaled models have been discarded during point cloud

1The article by (Karim, 2020) contains a quick, yet comprehensive, description of the
used architectures, and was partially responsible for the selection made.
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generation. Furthermore, because classification is performed based on the ge-
ometry of the object, the classes were defined taking into account geometrical
features. Thus, chandeliers are included in a specific class instead of in the
general lamp class because chandelier geometry is much more complex than
common lamps. On the contrary, two objects of different type with similar
geometry such as washing machines and dryers are considering in the same
class.

Table 2: Information about classes composing the dataset.

Class
Nº

instances
Class

Nº
instances

Class
Nº

instances

Bed 20 Door 28 Shower 78
Bidet 79 Drawer 25 Sink 73
Bin 31 Fridge 11 Sofa 76
Bookcase 4 Fume extractor 9 Table 89
Chair 71 Lamp 50 Toilet 137
Chandelier 19 Plant 20 Urinal 70
Chimney 10 Radiator 26 Washing machine/Dryer 12

Examples of point clouds obtained by point generation process are de-
picted in Fig. 8 where points are coloured on the basis of point surface vari-
ation. The fixed density dens used to sample point clouds was 4000pt/m2.
Concerning perturbation addition, Gaussian noise was modeled by a normal
distribution with a standard deviation of 0.005m while the parameters dxy
and zoff required to determinate the viewpoints in occlusion addition process
were set to 2.0 m and 1.5 m respectively. For surface variation computation,
the radius r was set to 0.04 m.

4.2. Tests and classification results

From the entire dataset described in the above section, four different
reduced datasets consisting of 5, 6, 8 and 10 object classes were created.
Table 3 lists the classes selected for each dataset. The point clouds selected
for each class are composed of 80% non-perturbed instances which are used
to training/validation and 20% noisy point clouds with occlusion simulating
real data in the testing stage.

For deep learning framework configuration, AlexNet architecture was se-
lected for training data setting epochs and batch size to 18 and 128 respec-
tively in every experiment. For image generation, four rotations have been
carried out for each image considering a maximum rotation angle Θmax of
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Figure 8: Examples of generated point cloud coloured on the basis of point surface varia-
tion.

Table 3: Class lists composing datasets.

Dataset Classes

Dataset1 chandelier, chimney, fridge, shower, toilet
Dataset2 bin, shower, sink, sofa, table, urinal
Dataset3 bin, chair, chandelier, door, shower, sink, table, toilet
Dataset4 bed, bidet, chair, chimney, fridge, radiator, shower, plant, sink, table

120º. Resolution of both binary and greyscale images was 224x224 while the
number of images generated for training/validation was 1500/400, 1500/400,
2000/600, 2400/1000 for Dataset1, Dataset2, Dataset3 and Dataset4 respec-
tively.

For each dataset, four simulations have been carried out to assess how
3D projection and format image influence on the trained model performance.
Table 4 lists confusion matrices derived from classification of Dataset1 using
orthographic and perspective projection to generate binary images. Classi-
fication performance was measured by overall accuracy (OA) metric which
is the ratio between the number of objects correctly classified and the total
objects. Results show that the neural network recognizes better the object
using orthographic images than perspective images.

Similar tests were carried out generating greyscale images on basis of
surface variation feature. Confusion matrices collected in Table 5 show that
the OA increases with both orthographic and images.

The same 4 tests were replied with the remaining datasets. The OA
obtained in each test is represented in Fig 9. With regard to the graphical
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Table 4: Confusion matrices of object prediction in dataset1

ORTHOGRAPHIC PERSPECTIVE

Class Cha Chi F S T Cha Chi F S T

Chandelier(Cha) 2 - - - - 2 1 - - 3
Chimney(Chi) - 2 - - - - 1 - - -

Fridge(F) - - 2 - - - - 1 - -
Shower(S) 1 - - 15 - 1 - - 15 -
Toilet(T) - - - - 27 - - 1 - 24

Accuracy 0.98 0.88

Table 5: Confusion matrices of object prediction in dataset1 using greyscale images

ORTHOGRAPHIC + SV PERSPECTIVE + SV

Class Cha Chi F S T Cha Chi F S T

Chandelier(Cha) 3 - - - - 3 - - - 2
Chimney(Chi) - 2 - - - - 2 1 - -

Fridge(F) - - 2 - - - - 1 - -
Shower(S) - - - 15 - - - - 15 -
Toilet(T) - - - - 27 - - - - 25

Accuracy 1.0 0.94

projection used to generate the images, all tests prove that orthographic
projection (blue line) is more suitable than perspective projection (green
line) for point cloud object classification based on Gestalt approach. This
find is opposite to the expected result, since perspective projection provides
more realistic images being more distinguishable for the human-eye. The
reason for this counter-intuitive outcome may be due to the simpler object
representation in orthographic images making the whole form of the objects
more clearly perceptible.

The use of greyscale images based on surface variation instead of binary
images increases the classification performance in most cases. However, this
feature might be not useful for classification in some cases on account of
limitations on surface variation computation. Perturbations added to point
cloud such as noise and occlusion may affect to surface variation computa-
tion as shown in Fig. 10a. Furthermore, the robustness of surface variation

21



Figure 9: Representation of the overall accuracy obtained for each test using orthographic
binary images (blue line), orthographic greycale images (light blue), perspective binary
images (green) and perspective greyscale images(light green).

algorithm decreases for objects with smooth variation surfaces (Fig 10b).
Another shortcoming is related to the HPR algorithm used for occlusion

addition and the determination of visible points in perspective image gener-
ation. Since these operations have to be run multiple times to prepare data
training/validation in execution time, HPR algorithm is suitable for the im-
plemented method because it is fast and simple. However, high level of noise
and curvature negatively affects the correct determination of whether a point
is visible or not.

5. Conclusions

A highly automated method for generating synthetic classified point clouds
from BIM objects has been presented. The synthetic point cloud datasets
are characterised by various simulating perturbations present in real data
such as noise or occlusions. Furthermore, a deep learning framework was
implemented to evaluate the feasibility of using this synthetic data for object
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(a) Noise and occlusion. (b) Smooth surfaces

Figure 10: Effect of a) noise, occlusion and b) smooth surfaces in surface variation com-
putation.

classification with deep learning techniques. Data generated in this way are
significantly helpful for augmenting dataset, using data controlled or balanc-
ing datasets by adding instances of shorter classes.

Results revealed the OA of deep learning models is higher when model is
trained with orthographic images instead perspective images. Beyond pro-
jection, the use of surface variation feature to enrichment greyscale images
when RGB data is not provided was explored. This object representation
improved classification performance in almost all tests. However, surface
computation limitations on complex point clouds might generate a mislead-
ing point cloud mapping. In future work, the study of new methods using
different data sources should be addressed with the aim to develop a general
methodology that produces reliable synthetic point cloud for deep learning
classification. In addition, attributes such as contextual information could
be added to overcome geometric representation weaknesses. Particularly, the
proposed method could be extended to generate point cloud scenes to use in
point cloud segmentation.
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